4 resultados para Tax compliance

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As operational impacts from buildings are reduced, embodied impacts are increasing. However, the latter are seldom calculated in the UK; when they are, they tend to be calculated after the building has been constructed, or are underestimated by considering only the initial materials stage. In 2010, the UK Government recommended that a standard methodology for calculating embodied impacts of buildings be developed for early stage design decisions. This was followed in 2011-12 by the publication of the European TC350 standards defining the 'cradle to grave' impact of buildings and products through a process Life Cycle Analysis. This paper describes a new whole life embodied carbon and energy of buildings (ECEB) tool, designed as a usable empirical-based approach for early stage design decisions for UK buildings. The tool complies where possible with the TC350 standards. Initial results for a simple masonry construction dwelling are given in terms of the percentage contribution of each life cycle stage. The main difficulty in obtaining these results is found to be the lack of data, and the paper suggests that the construction and manufacturing industries now have a responsibility to develop new data in order to support this task. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deterministic organization of nanostructures into microscale geometries is essential for the development of materials with novel mechanical, optical, and surface properties. We demonstrate scalable fabrication of 3D corrugated carbon nanotube (CNT) microstructures, via an iterative sequence of vertically aligned CNT growth and capillary self-assembly. Vertical microbellows and tilted microcantilevers are created over large areas, and these structures can have thin walls with aspect ratios exceeding 100:1. We show these structures can be used as out-of-plane microsprings with compliance determined by the wall thickness and number of folds. © 2011 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although musculoskeletal models are commonly used, validating the muscle actions predicted by such models is often difficult. In situ isometric measurements are a possible solution. The base of the skeleton is immobilized and the endpoint of the limb is rigidly attached to a 6-axis force transducer. Individual muscles are stimulated and the resulting forces and moments recorded. Such analyses generally assume idealized conditions. In this study we have developed an analysis taking into account the compliances due to imperfect fixation of the skeleton, imperfect attachment of the force transducer, and extra degrees of freedom (dof) in the joints that sometimes become necessary in fixed end contractions. We use simulations of the rat hindlimb to illustrate the consequences of such compliances. We show that when the limb is overconstrained, i.e., when there are fewer dof within the limb than are restrained by the skeletal fixation, the compliances of the skeletal fixation and of the transducer attachment can significantly affect measured forces and moments. When the limb dofs and restrained dofs are matched, however, the measured forces and moments are independent of these compliances. We also show that this framework can be used to model limb dofs, so that rather than simply omitting dofs in which a limb does not move (e.g., abduction at the knee), the limited motion of the limb in these dofs can be more realistically modeled as a very low compliance. Finally, we discuss the practical implications of these results to experimental measurements of muscle actions.